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Improvement of mass source/sink for an immersed
boundary method
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SUMMARY

An improved immersed boundary method using a mass source/sink as well as momentum forcing is
developed for simulating flows over or inside complex geometries. The present method is based on the
Navier–Stokes solver adopting the fractional step method and a staggered Cartesian grid system. A more
accurate formulation of the mass source/sink is derived by considering mass conservation of the virtual
cells in the fluid crossed by the immersed boundary. Two flow problems (the decaying vortex problem and
uniform flow past a circular cylinder) are used to validate the proposed formulation. The results indicate
that the accuracy near the immersed boundary is improved by introducing the accurate mass source/sink.
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1. INTRODUCTION

Recently the immersed boundary (IB) method using momentum forcing and a Cartesian grid
Navier–Stokes (N–S) solver has received much attention due to its ability to simulate viscous
flows over or inside complex geometries. Depending on how the momentum forcing is applied,
the IB method can be classified into two categories [1]: the continuous forcing approach [2] and
the discrete forcing approach [3–7]. Compared with the continuous forcing approach, the discrete
forcing approach has the advantage of sharp representation of the IB and requires less stability
constraint.

In the discrete forcing approach, the values at neighbouring points are interpolated to obtain the
desired boundary conditions at the IB, and the momentum forcing is obtained directly from the
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discretized equation of motion. Many interpolation schemes for the momentum forcing have been
developed to simulate an IB of arbitrary shape [3–5]. However, these schemes do not properly
account for mass conservation of the cells crossed by the IB. Although mass conservation can be
achieved by the N–S solver for all computational cells regardless of the presence of the IB, it is not
preserved for the virtual cells in the fluid obtained by cutting the cell with the IB and discarding
the solid part (simply referred to as ‘virtual cell’ in this paper). Thus in practice the non-physical
solution inside the solid region influences the physical solution in the fluid region. This problem can
be avoided by using the Cartesian grid method (also known as the cut-cell method) [6], in which
the solid part of the cell crossed by the IB is discarded and the fluid part either forms a new cell or
is absorbed by a neighbouring fluid cell. However, this reshaping procedure introduces substantial
complexities in terms of the modifications that must be made to the N–S solver. In addition,
the velocity field must be solved by iteration at each time step, which substantially increases
the computation time. Kang et al. [7] considered strict and approximate mass conservation of the
virtual cells, but no obvious improvement can be found in their results when mass conservation of
the virtual cells was taken into account.

Another approach of accounting for mass conservation of the cells crossed by the IB, proposed
by Kim et al. [4], is to introduce a mass source/sink into the continuity equation. In practice, the
only modification of the original N–S solver that was required was the addition of a source term to
the right-hand side of the pressure Poisson equation. This greatly simplified the manipulation and
increased the computation time only slightly. Importantly, using this approach the velocity field
can be solved without iteration at each time step. When the mass source/sink term was employed,
Kim et al. [4] found that the quality of the solution was improved and non-physical solution was
corrected. However, they formulated the mass source/sink term in an approximate manner, i.e.
the grid points fall on the IB. In the present study, we shall show that this approximation may
degrade the quality of the solution. Thus a more accurate mass source/sink term is formulated by
introducing face-centred velocities of the virtual cells. Bottino [8] also used a mass source/sink
which was added to the continuity equation for establishing the pressure drop across the opening
of the pipette. However, his approach was based on the continuous forcing approach applied to the
immersed elastic boundary [9, 10].

In the next section, we introduce the general numerical procedures, including the N–S solver and
the interpolation schemes. Details of the formulation of the mass source/sink term are described in
Section 3 and some numerical examples are shown in Section 4. Finally, the conclusion is drawn
in Section 5.

2. NUMERICAL METHODS

The present IB method is based on the N–S solver adopting the fractional step method and a
staggered Cartesian grid system [11]. The non-dimensional governing equations for an unsteady
incompressible flow are:

�u
�t

+ (u · ∇)u=−∇ p + 1

Re
∇2u + f (1)

∇ · u − q = 0 (2)
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where u is the velocity vector, p is the pressure, f is momentum forcing, q is the mass source/sink
and Re is the Reynolds number. A fully implicit time advancement is employed where the Crank–
Nicholson scheme is used for both the diffusion and convection terms. The governing equations
are discretized as follows:

un+1 − un

�t
+ Nun+1 =−Gpn+1/2 + 1

2Re
(Lun+1 + Lun) + f n+1/2 (3)

Dun+1 − qn+1/2 = 0 (4)

where N ,G, L and D are the linearized discrete convective operator, the discrete gradient operator,
the discrete Laplacian operator and the discrete divergence operator, respectively. Here n denotes the
nth time step and�t denotes the time increment. Velocity and pressure are then decoupled by a block
decomposition in conjunction with the method of approximate factorization. Furthermore, since the
intermediate velocity components are coupled due to the implicit Crank–Nicholson representation
for the convective term, additional decoupling for the intermediate velocity components is achieved
by the approximate factorization with only the nth time step velocity. The decoupled momentum
equations are solved without iteration and the temporal second-order accuracy is preserved. The
pressure Poisson equation is solved either by a direct method using FFT or a multigrid method.
Details regarding the present N–S solver can be found in Reference [11].

If the momentum forcings are calculated implicitly [3], a large sparse matrix is introduced for a
complicate interpolation scheme which gives a significant increase of computing cost. Instead, we
use a prediction step by the forward Euler explicit scheme

u# − un

�t
+ Nun =−Gpn−1/2 + 1

Re
Lun (5)

where u# is the predicted velocity. Then the momentum forcing is simply expressed as

f n+1/2 = U# − u#

�t
(6)

where U# denotes the velocity which we want to obtain at the forcing point in order to satisfy the
desired no-slip condition at the IB by interpolation from the neighbouring points. The above equation
indicates that the momentum forcing is proportional to the difference between the desired velocity
and the predicted velocity. So it can be regarded as a special case of the feedback forcing [12, 13],
while the momentum forcing here is calculated at discrete points instead of distributing into the
neighbouring points by the discretized Dirac delta function.

The desired velocity U# at the forcing point is obtained by interpolation using the predicted
velocity field u# [4]. Assume that the forcing points are located inside the IB. If two neighbouring
points of the forcing point (X0) are located in the fluid region, as shown in Figure 1(a), three
interpolations are chosen:

(1) linear interpolation:

�= a0 + a1x + a2y (7)

(2) bilinear interpolation:

�= a0 + a1x + a2y + a3xy (8)
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Figure 1. Schematic diagram for the interpolation schemes: (a) two neighbouring points are located in the
fluid region; (b) only one neighbouring point is located in the fluid region and the boundary point is close to
the forcing point; and (c) only one neighbouring point is located in the fluid region and the boundary point

is close to the neighbouring fluid point.

(3) quadratic interpolation:

�= a0 + a1x + a2y + a3xy + a4x
2 + a5y

2 (9)

where � is an arbitrary physical quantity. Three node values (X0, X1 and X2) are used to determine
the coefficients (a0, a1 and a2) of the linear interpolation

⎡
⎢⎢⎣
a0

a1

a2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1 x0 y0

1 x1 y1

1 x2 y2

⎤
⎥⎥⎦

−1 ⎡
⎢⎢⎣

�0

�1

�2

⎤
⎥⎥⎦ (10)

while four node values (X0, X1, X2 and X3) are needed for the bilinear interpolation and six
node values (X0, X1, X2, X3, X4 and X5) are needed for the quadratic interpolation. Note that the
coefficients of large absolute value are produced which may lead to numerical instability when X0
is near or on the line connecting X1 and X2 for the linear interpolation, and when X0 is near X1
or X2 for the quadratic interpolation. The bilinear interpolation (Equation (8)) is most robust for
arbitrary position of X0, and therefore is used for Figure 1(a).

If there is only one neighbouring point located in the fluid region, as shown in Figure 1(b), the
linear interpolation is used as

�= a0 + a1y (11)

while the quadratic interpolation is used as

�= a0 + a1y + a2y
2 (12)

However, when X0 is close to X1, as shown in Figure 1(c), both the linear and quadratic interpo-
lations produce large coefficients. An efficient remedy for this case is to introduce the image point
Xi of the forcing point X f [4, 5, 14]. First the value at the image point is interpolated from its
neighbouring points and then the value at the forcing point is calculated according to the relation,

� f = 2�0 − �i (13)
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Since the above equation is spatially second order, use of the quadratic interpolation does not
improve the spatial accuracy [5]. For simplicity, the linear interpolation is used for Figure 1(b)
and (c), and the image point is introduced only for Figure 1(c).

3. FORMULATION OF THE MASS SOURCE/SINK TERM

In the present study, we focus on the derivation of a more accurate mass source/sink term. Consider
a two-dimensional flow near the stagnation point. The velocities in the fluid region and those at
the forcing points obtained from interpolation are displayed in Figure 2(a). For simplicity, the
superscripts of the velocity components are neglected. Without special description, they denote the
intermediate velocity components in this section. Before pressure correction, mass conservation
is not preserved for the computational cell. Without the mass source/sink term, after solving
the pressure field and correcting the velocity field, v2 changes its direction to preserve the mass
conservation (see the dashed arrow for v2), while u1, u2 and v1 keep their directions due to the
applied momentum forcings. Note in this diagram that v1 is obtained not only from the boundary
value and v2, but also from another neighbouring point of v2, due to the use of the image point.
This non-physical solution was also presented in Reference [4], and was corrected by introducing
the mass source/sink term

q = 1

�V

∑
i

�u · n�Si (14)

where �V is the cell volume, �Si is the area of each cell face, n is the unit normal vector outward
at each cell face, and � is defined as 1 for forcing points of fi �= 0 and 0 elsewhere. In the present
case, as shown in Figure 2(a), Equation (14) becomes

q = u2
�x

− u1
�x

− v1

�y
(15)

q
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Figure 2. Schematic diagram of the mass source/sink term: (a) flow near the
stagnation point; and (b) the general case.
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The discretized continuity equation is represented by

u2�y − u1�y + v2�x − v1�x = q�x�y (16)

However, due to the approximation that the grid points fall on the IB when calculating the mass
source/sink term, Equations (15) and (16) obviously yield v2 = 0, regardless of the true value of v2.
Thus, a more accurate expression for the mass source/sink term is needed.

Let us consider the general case shown in Figure 2(b). Besides the velocity components defined
at the centre of the cell face, additional face-centred velocities u1c and u2c for the virtual cell
(�AEFB) are also displayed. The volume flux for the virtual cell (�AEFB) is expressed as

v2�x + u2c�2�y − u1c(1 + �1)�y = 0 (17)

where
�i = 1/2 − di/�y (i = 1, 2) (18)

represents the dimensionless distance and di is the distance from the forcing point to the boundary
point intersected by the grid line. Note that �1<0 and �2>0 according to Figure 2(b). The values
of u1c and u2c are obtained by linear interpolation of the velocities at neighbouring points

u1c =
(
1 + �1

2

)
u1 − �1

2
u1n (19)

u2c = �2
1 + 2�2

u2n (20)

where u1n and u2n denote the velocities of the neighbouring points (in the fluid) of u1 and u2,
respectively. For simplicity, Equations (17)–(20) are given only for a uniform grid. However, it is
straightforward to extend the formalism to the case of a non-uniform grid.

From Equations (16)–(20), as shown in Figure 2(b), q is expressed as

q = u2
�x

− v1

�y
+ �1

�x
u′
1c − �2

�x
u′
2c (21)

where u′
1c and u′

2c denote the velocities at the middle of EC and BF , respectively,

u′
1c =

(
3

2
+ �1

2

)
u1 −

(
1

2
+ �1

2

)
u1n (22)

u′
2c = �2

1 + 2�2
u2n (23)

Note that the first two terms on the right-hand side of Equation (21) are the same as in the method
of Kim et al. [4], whereas the other two terms (�1u

′
1c/�x − �2u

′
2c/�x) are added in the present

study. These two additional terms denote the volume flux through small segments of the cell faces
crossed by the IB (EC and BF , respectively). Finally, the following general expression for q can
be formulated

q = 1

�V

∑
i

(�u · n − �iu
′
c · n)�Si (24)
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where

u′
c =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�i
1 + 2�i

un if �i>0

(
3

2
+ �i

2

)
u −

(
1

2
+ �i

2

)
un if �i<0

(25)

In Equation (24), �V, �Si ,u, n and � are defined as in Equation (14), �i is defined in
Equation (18) and u′

c is obtained from Equation (25), where un denotes the velocity at the neigh-
bouring point of u in the fluid region. This formula is valid for a virtual cell of arbitrary shape.
The expression (�u ·n−�iu

′
c ·n)�Si in Equation (24) corresponds to the volume flux through the

solid parts of the cell faces, such as EC and FD, where the velocity at the centre of the segment
is obtained from linear interpolation. Because each pair of neighbouring cells share a cell face,
the volume flux through the solid parts of the cell face will have the same magnitude but opposite
sign for the two neighbouring cells. Therefore, the integration of the volume flux due to the mass
source/sink over the whole computational domain is equal to zero and the global mass conserva-
tion is satisfied. We found that most of the time consuming part in the Navier–Stokes solver is the
pressure Poisson equation. The cost for calculating the mass source/sink term is almost negligible.

4. NUMERICAL EXAMPLES

4.1. Decaying vortex problem

To verify the spatial accuracy of the present method, the decaying vortex problem is chosen because
it is an unsteady problem with an analytical solution:

u(x, y, t) = − cos �x sin �y e−2�2t/Re

v(x, y, t) = sin �x cos �y e−2�2t/Re

p(x, y, t) = − 1
4 (cos 2�x + cos 2�y) e−4�2t/Re

(26)

Figure 3(a) shows the contour of u at t = 0 obtained from the above equation. The computational
domain is −1.5� x, y � 1.5 and the IB is located at x = ± 1 and y = ± 1 (see Figure 3(b)). The
grid is kept uniform inside the IB and is stretched slightly outside it. Six different grid numbers
are tested. In all cases, the grid size inside the IB is intentionally set to give a dimensionless
distance of � = 0.33 (see Equation (18)), facilitating comparison. The Reynolds number based on
the maximum velocity and vortex size is set to 30, and the initial and boundary conditions are
given by the analytical solution (i.e. Equation (26)). The flow at t = 0 is integrated in time using
a time step of �t = 0.0001 and the simulated flow field at t = 0.3 is compared with the analytical
solution.

Simulations of three cases are considered: without the mass source/sink term, with the mass
source/sink term of Kim et al. [4] (referred to as the KKC method hereafter), and with the present
mass source/sink term. Figure 4 shows the maximum error of u within the IB for the three cases
at each grid size. We can see that due to the interpolation scheme adopted here for the momentum
forcing, the accuracy is second order for all the three cases. When the present mass source/sink
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Figure 3. (a) u contour of the analytical solution at t = 0 for the decaying vortex problem; and (b) grid system
and IB configuration for simulation of the decaying vortex problem.
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term is used, however, the errors are much smaller than those obtained using the KKC method,
which are in turn much smaller than those obtained when no mass source/sink term is used. This
shows that introducing the mass source/sink term improves the quality of the solution significantly
and the present method is more accurate than the KKC method.

4.2. Uniform flow past a circular cylinder

As our second example, we consider the flow past a circular cylinder immersed in an unbounded
uniform flow, a benchmark problem for numerical validation. A computational domain of 50D×30D
is discretized using two sets of grids systems 257(40)× 151(40) and 513(100)× 451(100) (referred
to as G1 and G2, respectively), where the grid number within the cylinder diameter is given in
the parentheses. The grid is uniformly distributed inside the cylinder and stretched outside the
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Figure 5. Computational domain and grid system for simulation of uniform flow past a circular cylinder.
Grid number is 257× 151 in this figure and the cylinder centre is located at the origin.

Figure 6. Instantaneous streamlines of uniform flow past a circular cylinder: (a) Re= 40; and (b) Re= 100.

cylinder, as shown in Figure 5. The flow is coming from left to right of the computational domain.
A Dirichlet boundary condition (u =U∞, v = 0) is used at the inflow and far-field boundaries, and
a convective boundary condition is used at the outflow.

Simulations are carried out at Reynolds numbers of Re= 40 and 100, where Re=U∞D/�
with U∞ the free-stream velocity and D the cylinder diameter. Figure 6 shows the instantaneous
streamlines in the near wake of the cylinder using the grid system G2. We can see that a pair of
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Table I. Comparison of recirculation length, drag coefficient, lift coefficient and Strouhal
number with those obtained in previous studies.

Re= 40 Re= 100

Lw/D CD CD C ′
L St

G1 2.28 1.57 1.37 0.33 0.167
G2 2.27 1.56 1.36 0.33 0.167
Kim et al. [4] — 1.51 1.33 0.32 0.165
Tseng and Ferziger [5] 2.21 1.53 1.42 — 0.164
Ye et al. [6] 2.27 1.52 — — —
Liu et al. [15] — — 1.35 0.34 0.165
Linnick and Fasel [16] 2.28 1.54 1.34 0.33 0.166

Figure 7. Isoline of u = 0 along the cylinder surface.

symmetric vortices are attached behind the cylinder at Re= 40 and the vortex is shedding from the
cylinder at Re= 100. Table I presents a comparison of the present results with previous studies.
Excellent agreement is found among the scatter of the data for both the coarse and fine grid systems.

Figure 7 shows the isoline of u = 0 at Re= 40 using the grid system G2 to check the no-slip
condition along the IB. In Figure 7, the result of the KKC method shows deviations at various
grid points near the IB, as would be expected for a step-wise approximation, which is corrected by
using the present mass source/sink term.

The pressure coefficient along the cylinder surface at Re= 40 and 100 is shown in Figure 8
for both the coarse grid system G1 (Figure 8(a)) and the fine grid system G2 (Figure 8(b)). The
results obtained with the body-fitted grid [17] are also shown for comparison. The pressure at the
cylinder surface is obtained from the pressure at the cell centre (in the fluid region) nearest to the
IB by assuming that the wall-normal derivation of pressure at the surface is zero. In Figure 8(a),
the results of the KKC method agree with those obtained with body-fitted grid in general and show
a little deviation at some points. However, in Figure 8(b), the results of the KKC method exhibit
obvious oscillations along the surface, especially near the stagnation point and the separation point,
which can be seen more clearly in the inset. These oscillations are due to the inaccurate mass
source/sink term. These errors are corrected by the present method. We can see that the present
results are smooth and agree well with those obtained with the body-fitted grid.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:1659–1671
DOI: 10.1002/fld



IMPROVEMENT OF MASS SOURCE/SINK 1669

C
p

-1.5

-1

-0.5

0

0.5

1

1.5
Present
KKC
Body-fitted grid

(a)

Re=40

Re=100
‘q

C
p

60 80 100

-1.2

-1

-0.8

-0.6

‘q

C
p

60 80 100

-1.2

-1

-0.8

-0.6

θ

C
p

50 100 150
-1.5

-1

-0.5

0

0.5

1

1.5

(b)

Re=100

Re=40

Figure 8. Pressure coefficient along the cylinder surface obtained using: (a) the grid
system G1; and (b) the grid system G2.

In order to better understand the advantage of the present method over the KKC method, the
mass source/sink obtained by both methods is examined. Figure 9 shows the mass source/sink
near the IB at Re= 40 for both grid systems G1 and G2. Using the KKC method, see Figures 9(a)
and (c), the resulted mass source/sink is distributed across the IB at various points and becomes
more serious with the fine grid system. The mass source/sink outside the IB is non-physical and
will affect the flow field. It is considered to be the reason of pressure oscillation near the IB. This
situation is improved by the present method, see Figures 9(b) and (d). We can see the mass source
is restrained well inside of the IB, especially with the fine grid system. Thus it is confirmed that the
present improvement of the mass source/sink have an effective influence on the numerical solution,
especially for the fine grid system.

5. CONCLUSIONS

In the present study, we developed an improved IB method using a mass source/sink as well
as momentum forcing for simulating flows over or inside complex geometries. The proposed IB
method is based on the Navier–Stokes solver adopting the fractional step method and a staggered
Cartesian grid system. The significance of mass conservation of the virtual cell on the quality of
the solution near the IB is discussed, and a more accurate formulation of the mass source/sink term
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Figure 9. Contour of the mass source/sink near the IB within 0� � � 90◦ at Re= 40 obtained by (a, c)
the KKC method and (b, d) the present method with (a, b) the grid system G1 and (c, d) the grid system
G2. Solid lines represent positive values ranged from 1 to 12 with increment 1 and dashed lines represent

negative values ranged from −1 to −12 with increment −1.

is derived by considering mass conservation of the virtual cells. By applying the proposed method
to two flow problems (the decaying vortex problem and uniform flow past a circular cylinder), the
results indicate that the present method reduces the error of the numerical solution significantly;
specifically, the boundary conditions at the IB are better enforced and the oscillations of the pressure
field near the IB observed using the previous method are eliminated.
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